Deep Neural Networks Compiler for a Trace-Based
Accelerator

Andre Xian Ming Chang, Aliasger Zaidy, Marko Vitez, Lukasz Burzawa, Eugenio Culurciello
FWDNXT Inc. 1281 Win Hentschel Blvd, West lafayette, USA
achang,azaidy,marko.vitez,Iburzawa,euge@fwdnxt.com

Abstract

Convolutional Neural Networks (CNNs) are the algorithm of
choice for image processing applications. CNNs are a highly
parallel workload that leads to the emergence of custom hard-
ware accelerators. Deep Learning (DL) models specialized in
different tasks require programmable custom hardware and a
compiler/mapper to efficiently translate different CNNs into
an efficient dataflow in the accelerator. The goal of this paper
is to present a compiler for running CNNs on programmable
custom hardware accelerators with a domain-specific ISA
that targets CNNs. In this work, the compiler was evaluated
and tested on a hardware accelerator that was presented in
[18]. The compiler uses model definition files created from
popular frameworks to generate custom instructions. The
model goes through static compilation and different levels
of hardware aware optimizations that improve performance
and data reuse of the generated program. The software also
exposes an interface to run on various FPGA platforms, pro-
viding an end-to-end solution. Various CNN models were
benchmarked on different systems while scaling the number
of processing units.

CCS Concepts -+ Software and its engineering — Com-
pilers; - Hardware — Hardware accelerators;

Keywords DNN, Compiler, accelerator

ACM Reference Format:

Andre Xian Ming Chang, Aliasger Zaidy, Marko Vitez, Lukasz
Burzawa, Eugenio Culurciello. 2018. Deep Neural Networks Com-
piler for a Trace-Based Accelerator. In Proceedings of 19th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’18). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3211332.3211333

1 Introduction

Deep Neural Networks (DNNs) are widely adopted in various
areas, such as robotics, security and data analytics. DNNs are

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5803-3/18/06.
https://doi.org/10.1145/3211332.3211333

composed of highly parallelizable tensor operations, making
them well suited to hardware accelerators. Accelerators are
a very attractive solution for deploying DNNs especially in
the embedded world, where it demands real-time processing
under a limited power budget. Several hardware accelerators
that use ASIC or FPGA were developed [18, 24]. At the same
time, software improvements for optimizing DNN execution
on CPU and GPU are under active research [11, 34].

A method to implement a programmable Deep Learning
(DL) inference engine is to create a domain-specific instruc-
tion set (ISA). Manually crafting assembly-like custom in-
structions can be cumbersome and error-prone, especially
when a model is composed of several layers. Even if one was
willing to write custom assembly code, modifying thousands
of lines would be required to further customize the hard-
ware and software. The compiler should generate correct
and efficient code. It also needs to parse various DNN models
created from different high-level frameworks, so that users
can use their favorite DL tool.

The goal of this work is to present a compiler (called Jad) to
support DL accelerators with custom ISA and the supporting
software elements to execute a model defined in a high-level
framework. In this work, the compiler was evaluated and
tested for a specific hardware accelerator [18]. The com-
piler can be extended to address other hardware platforms.
This work presents hardware aware optimization methods
that aim to improve data reuse and performance. The main
contribution of this work is two-fold: it demonstrates that
specialized compiler flow leads to better hardware utiliza-
tion, and ahead of time (AOT) compilation and loop unrolling
expose a better schedule of the instructions for hardware
accelerators that contain software managed buffers.

The compiler supports ONNX interchange format, allow-
ing it to parse models from different frameworks. The com-
piler generates custom instructions for various DNN models
trained for face identification, image segmentation, style
transfer, speech identification, and speech commands. Ja
also provides an interface for users to create their demo
applications, resulting in an end-to-end solution. The gen-
erated code was benchmarked on different FPGA systems
with 256-2048 processing units.

The following sections are going to mention: the literature
review, a description of CNNs workloads, a brief overview of
the hardware accelerator, the compiler flow and results. The

https://doi.org/10.1145/3211332.3211333
https://doi.org/10.1145/3211332.3211333

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

compiler flow is divided into 4 sections: parsing, intermediate
code, instruction generation, and deployment.

2 Literature Review

Accelerators provide various ways to control them: defined
hardware control signals, extended ISA or domain-specific
ISA. [6, 17] are examples of accelerators that expose hard-
ware control signals. [15] presents a compiler for a custom
CNN accelerator using Torch5 models. Their approach is to
map Torch5 models into a set of pre-defined sequence of con-
trol signals for DMA transfers and processing units. Another
approach is to extend an existing ISA as seen in [4]. This
approach improves the programmability of the accelerator.
[27] goes one step further by presenting a custom ISA with
64-bit instructions and 64 registers. This allows the designer
to pick which instructions are needed, simplifying the con-
trol logic. Custom ISA also allows researchers to experiment
with different ISA designs. [25] presents optimizations on
controller logic to skip weights and activations.

Higher levels of abstraction ease the representation of the
programmer’s intent. Lower levels of representation provide
a closer match with the hardware capabilities. There are
various DL frameworks used to implement DNN: Tensor-
flow [2], Torch7 [12], Pytorch, MXNet [9] and Caffe [23].
An evaluation of those are presented in [5]. Another soft-
ware layer is used to optimize tensor operations: XLA [37],
Thnets [39] and ngraph [26]. A software back-end provides
a link between DL frameworks and the accelerator through
high-performance libraries such as cuDNN [11] and MKL
[40]. An extensive review of different hardware and soft-
ware strategies in literature is presented in [35]. In CPU
and GPU, CONV is commonly implemented using Toeplitz
matrices [11]. CONV is converted into a matrix matrix multi-
plication and GEMM libraries are used in the back-end [40].
This transformation results in more replicated data. Thus,
mapping CONV directly into the accelerator is used in this
work to reduce required memory bandwidth. In [4], CONVs
are partitioned in tiles with extra overlap regions, called
"augmented-tiles", in DRAM to avoid multiple DMA trans-
actions. TVM [8] and Tensor comprehensions [38] present
methods for automatic accelerator code generation applying
lower level tensor optimizations such as blocking, opera-
tor fusion, tiling, and others. Glow [31] proposes an IR that
better matches with DNN hardware accelerators.

Finding the best partition and assignment strategy for a
specific architecture and generating code that achieves near
peak performance is often tackled with heuristic methods.
The execution of DNN models is iterated through different
compilation parameters, which are automatically tuned. Tun-
ing libraries [3, 30] perform search optimizations to find the
best compilation parameter. Those techniques are also ap-
plied to the exploration of hardware designs using FPGAs
[33]. Use of machine learning to guide the search for optimal

A. Chang, A. Zaidy, M. Vitez, L. Burzawa, E. Culurciello

hardware/software co-design was shown in [10, 13]. Auto-
tuning methods for optimizing DNN inference using genetic
algorithms are shown in [38].

3 Deep Neural Networks

DNNs are composed of various layers of operations con-
nected. Before designing a compiler for DL accelerators, let
us briefly go through commonly used layers in DNN models:

Spatial Convolution (CONV): Spatial convolution is the
core layer of CNNs, accounting for more than 90% of the
operations for most of CNN models. CONV is the multipli-
cation and accumulation of values from an 3D input tensor
(maps) with a set of 3D kernels that produce a 3D output
volume. Each 3D kernel is associated with a bias value and
produces a 2D output plane, also referenced as feature maps.
Each output pixel of this plane was created by striding the
kernel along with a window of the input. Padding is added
to the corners of the input plane so that the kernel can cover
the corners of the input. Padding is also used to create dif-
ferent output sizes. The main parameters of a CONV are
dimensions of the input, kernel sizes, stride, and padding.
From those parameters, the output size is calculated using
equation 1. Only equation with subscript x is shown, but an
equivalent with subscript y should be inferred.

ix—kx+2*pade

+1 (1)

Ox = |.
Sx

where iy, iy and i, is input width, height and planes. And
0x, 0y and o, is output width, height and planes. ky, k;,
and k, is kernel width, height and planes. k, and i, are
equal. sy is the window stride along x. pad, is number of
columns padded on left and right. Usually, zeros values are
used for padding. Reflection padding uses the corner values
as padding instead of zeros. In any case, the compiler uses
the appropriate addressing and computation sizes to avoid
sending padding values to the co-processor.

Transposed Convolution (TCONV): CONVs produce
o and o, that are less or equal to i and i,. Thus, the sizes
of feature planes shrink in the deeper layers. To reverse this
process, transpose convolution is a special case of CONV that
recovers the sizes of the feature planes. TCONV have o, and
o, greater than or equal to its i, and i,. The padding defines
the number of rows or columns padded in the output of the
TCONV. Similar thought applies for stride. TCONV also have
an output padding, in which TCONV’s input has an extra
row or column in one of the corners so that the output width
and height matches. It is possible to compute TCONV using
an equivalent CONV. TCONV with stride greater than 1 is a
CONYV with padding/gaps in between each row and column.
The gap size is stride minus 1. The location of the extra
row or column added for output padding varies between
frameworks. A good visualization of the TCONV operation
is shown in [14].

DNNs Compiler for a Trace-Based Accelerator

Expanding the input is an expensive price for the accel-
erator since it increases the required memory footprint by
(sx — 1) * (ix — 1). The compiler does not send the padded in-
put, it uses the appropriate access addresses to avoid sending
padding/repeated data from memory to the co-processor.

Fully connected (FC): Fully connected layer is a matrix-
vector multiplication. The matrix parameters are learned so
that they map its input into an output vector with a learned
linear function. FC is used in the last few layers of CNNs
to provide a classification vector. FC is also largely used in
Recurrent Neural Networks (RNNs) [22]. FC layer is a data
movement intensive operation because it provides limited
data reuse. In [24], they show that CNNs are compute in-
tensive whereas RNNs are bandwidth intensive. Memory
bandwidth is a bottleneck for RNN FPGA based accelerators
[6]. Weight compression and weight pruning based on net-
work sparsity are techniques that lower memory bandwidth
requirement for this type of workload [19, 20]. FC layers
can also be viewed as a CONV with unitary kernel sizes and
strides. i, is the input vector size, which is also the width of
the matrix. And o, is the output size, which is also the height
of the matrix. This allows the reuse of most algorithms used
in CONV for FC.

Average pooling (Avgpool) and Max pooling (Max-
pool): Average pooling takes the average of the values in
a window of the feature map. Avgpool also can be imple-
mented as a CONV with a single weight value of the inverse

of window size (m) Multiplying and accumulating all

values in a window produce the average value of a window.
Pooling is a down-sampling technique to achieve data invari-
ance and to compress feature representation. Max pooling is
element-wise comparison and its output is the highest value
in a window. The input and output size relationship is the
same as shown in 1.

Activation unit: Non-linear functions are applied to some
layer’s outputs so that the model will reproduce non-linear
relations. Some examples of activation units used are recti-
fied linear unit (ReLU), softmax, tanh and sigmoid.

Add, Multiply and Concatenation: These are impor-
tant vector operations in linear algebra. Given a multiply
and accumulate engine, add is y = x * 1 + b, where y is out-
put, x is one input vector and b is another vector. Multiply
isy = x * b + 0. Vector add is mainly used as a bypass con-
nection between layers. This idea was introduced in ResNet
models [21]. Concatenation is used to group feature maps
from different layers. This was introduced in GoogLeNet
models [36].

4 Inference Engine

The inference engine of choice used in this work was pre-
sented in [18]. Its main compute engine is a 16 bit multiply
and accumulate unit (MAC). The data precision of choice
of the MAC:s is fixed point Q8.8. A vector MAC (VMAC) is

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

composed of 16 MACs, and 4 vMACs plus a vector max-pool
unit (vVMAX) are grouped into a compute unit (CU). Each
vMAC has a private double buffered kernel buffer (WBuf)
and all vVMACs in a CU share the input data through the maps
buffer (MBuf). A compute cluster (CC) is composed of 4 CUs,
and multiple CCs can be implemented, each containing 256
MACs. The inference engine’s 32- bit instructions are stored
in the instruction buffer (I$). Each CC has a control unit,
which is a pipeline that executes those instructions. The con-
trol unit has thirty-two 32- bit registers to store scalar values.
The custom ISA has 13 different instructions, which imple-
ment four different functionalities: data movement, compute,
flow control and memory access. The details of each instruc-
tion are presented in [18]. For this paper, the most relevant
instructions are: MAC, MAX, VMOV, LD, TMOV, Branch
and SYNC. MAC multiplies and accumulates a contiguous
sequence of data from MBuf and WBuf. MAX compares two
blocks of data from MBuf. MAC and MAX send results back
to MBuf. VMOV pre-loads data to the compute unit to set the
initial value for MAC. It is used to add the bias or implement
the residual addition. LD sends data from external memory
to MBuf, WBuf or I$. TMOV sends data from MBuf to ex-
ternal memory. Branch is used to create loops and if-else
conditions. SYNC is an instruction that ensures all CUs or
CCs are synchronized.

The accelerator used in this work has two modes of opera-
tions: cooperative (COOP) and independent (INDP). In COOP
mode, all MACs in one vMAC work together to produce one
value of the output map. Each MAC processes a different
channel of one kernel, and the results of all 16 MACs are
added together by an extra adder called gather adder to pro-
duce one value. Each vMAC produces one 1 output feature
map (0p). WBuf for each vMAC has a different kernel. The
maps are broadcast to all CUs MBuf, thus 4 CUs produce 16
output values along o,.

In INDP mode, all MACs in one vMAC work independently
on different kernels and map values from Mbuf are broadcast
to produce 16 different output map values. Each WBuf in a
CU has a multiple of 16 kernels, thus a CU produces 64 output
values along o,,. Different partitions of the maps are sent to
different MBuf and the same set of 64 kernels is broadcast
across CUs. The 4 CUs produces 4 vectors of 64 values stored
back to their own MBuf.

In general, COOP mode gives high-utilization for high
data reuse cases: large channel and/or large window size.
Independent mode is useful for small channel cases used in
most models initial layers, which need to extract features
from an input image of channel 3 (RGB).

5 Parsing

The first step towards generating code for a custom acceler-
ator is to gather information about the model’s architecture.
There are various high-level DL frameworks [2, 9, 12, 23]

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

Supported Frameworks

Train DNN
ONNX
Export model
Thnets
Compiler
Import

User application

Run inference

Doberman
Rottweiler
Bloodhound

Inference Engine

Figure 1. Workflow to run inference on the custom hardware
accelerator. DNN models are trained using a DL framework
and imported to Jad using thnets.

being used today. Each represents DNNs differently, and they
exploit different optimizations for deploying it on CPU or
GPU systems. ONNX [1] is an exchange format that allows
exporting and importing models created from different DL
frameworks. Adopting ONNX allows users to deploy models
that were trained on any DL framework supported by ONNX.
Figure 1 shows the workflow to run a model on the hardware
accelerator.

Thnets [39] is used to read a model file exported from
ONNX. A list of layer objects is created to represent the
layer computation sequence in the hardware accelerator. The
objects contain information needed to generate code. Layer
fusion is performed in this step to create layers that match the
hardware capabilities. For example, the vector add operation
present in ResNet models is fused with a convolution layer.
Non-linear operations, such as MFM in [41] and ReLU, are
also merged with convolution layers. An example is shown
in figure 2, parts 1 and 2.

Main memory shared between the host and the inference
engine is managed by software. Memory regions are allo-
cated and maps are accessed in a double buffering fashion.
When maps are shared among non-sequential layers, then
extra regions are allocated to retain maps for later layers to
use. Using two memory regions for sequential layers saves
main memory space compared to allocating memory for each
layer. This is important for embedded systems applications
in which main memory is limited. In some models, such as
GoogLeNet [36] and ResNet [21], some layers share their
input and output. Those layers are labeled according to their
parallel path. Later the labels are translated into memory
addresses.

After creating the model list, each layer goes through a
decision step that processes each layer’s information and

A. Chang, A. Zaidy, M. Vitez, L. Burzawa, E. Culurciello

its neighboring layers to decide how to decompose and
generate instructions for them. The choice of which mode
(COOP/INDP) to use is defined by the layer parameters. If
kernel size provides enough computational cycles and its
channel size is multiple of 16 then COOP is used otherwise
INDP is used. A compute order choice is based on whether
to reuse weights or maps. Weight and maps tile sizes are de-
fined by their buffer sizes. The number of tiles needed is the
ratio between the total size and the tile size. An estimate of
the data to be sent is calculated. And the option that requires
the least data transfer is chosen.

LSTMs [22] and GRUs are also supported in this frame-
work. They are executed as a group of FC layers. Once the FC
layer’s output vectors are produced, element-wise add, mul-
tiply, sigmoid and tanh are executed accordingly to create
the final output. The recurrence states are saved in memory
for multiple iterations.

6 Intermediate code

After the model parsing task completes, the compiler needs
to partition the input and weights data and map the dataflow
onto the hardware. DNN accelerators [29], are composed of
an on-chip memory buffer (Buf) to store data, a group of
processing elements and a control core. This leads to 3 main
operations: load, compute and store. A sequence of load,
compute and store is grouped into a compute step. Each step
consumes part of the layer’s input and produces part of the
layer’s output. The compiler creates a list of compute steps
based on the layer parameters.

The limits imposed by Buf size and layer parameters are
first calculated before creating the compute list. Based on
these limits, load objects (LO) are created such that a balance
between input data and output data coexists in the same
Buf. LO sends data from external memory into Buf. The
algorithm aggregates as many weights as possible that fit in
WBuf. After LO creation, compute objects (CO) are generated
based on the data available in MBuf and WBuf.

For a CONV, the minimum input necessary to produce an
output is ky X ky X k. Maps data is arranged with planes
first, then columns and rows last (p, x, y). To ensure data is
contiguous and to avoid issuing multiple LD instructions,
ix X ky X kj, is needed to create one output row. The division
order is rows first, then columns and planes last and a greedy
approach tries to create as many output rows it can. If the
input rows and output row doesn’t fit into the MBuf, then
other strategies need to be used. The input rows are divided
into parts, which requires multiple LD instructions to put the
maps data into the MBuf. In COOP mode, parts of the output
row can be sent to different MBufs, which requires multiple
TMOV instructions. Another approach is to divide the planes
into parts and a compute step would create partial results.
In ResNet models, it is common to have a CONV followed

DNNs Compiler for a Trace-Based Accelerator

by an ADD. For this fused layer, the MBuf will contain the
CONV’s input, output, and the ADD’s input.

CO contains information about the vector compute oper-
ations necessary for producing a number of output values.
This encompasses up to 3 loops: stride on the y-axis, the
x-axis and accumulate. The accumulate loop issues multiple
instructions that accumulate the results before producing an
output pixel. This is because not all data needed to produce
an output value is contiguous. CO will be translated into
nested loops of vector instructions to perform multiply and
accumulate or compare. The loop boundaries are a repeat
variable and the data access address is incremented by an
offset variable. CO also has an extension with variables for
vector register load, which implements residual add and bias
addition.

There are 3 types of CO: MAC, MAX and COPY. MAC CO
generates instructions to multiply and accumulate values
from MBuf and WBuf, and it conditionally creates VMOV
instructions. MAX CO generates instructions to compare val-
ues in MBuf. COPY uses self-comparison (MAX instructions)
to copy MBuf values to a different location in MBuf.

Lastly, store objects (SO) are created to return the output in
MBuf to external memory. Compute step creation is shown
in figure 2, part 3. In the example, assume input data to
CONV is in m0, which is also the input to a residual add in
a following RESADD layer. m1 is another memory location
that has the output of the previous CONV and it is the input
of the CONV part of the RESADD. w0 and w1 are other
memory locations for weights. Precise address offsets were
omitted. The created compute schedule has 2 fully unrolled
loops. Depending on the CONV layer, this schedule loops all
LO KBufs for each MBufs, or vice-versa. Optimization passes
are applied to this initial schedule described in algorithm 1.

Algorithm 1 Initial operation schedule

for all k in K445 do
LO k
for all m in M,4,;s do
LOm
CO (m=k)
end for
SO
end for

Each operation has a set of address ranges. The operation
dependencies are verified based on these ranges and the type
of operation. Every CO uses data from a LO or previous CO
and creates data for a SO or for a following CO. The list of
compute steps needs to guarantee that all LOs needed by a
CO happened before it. All results of a CO are stored with a
following SO or consumed by another CO. Following these
observations, optimization passes are applied to a compute
schedule. Algorithm 2 describes a pass to group COs based

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

on LOs. This exposes redundant LOs across nested iterations.
Figure 3 shows an example of the pass. In the example, as-
sume there are 2 kernel parts k(0) and k(1). And there are 3
maps parts that produce 2 stores. First, compute steps with
maps loads are grouped. Next redundant loads are removed,
producing a schedule that requires less data transfer.

Algorithm 2 Group LOs and remove redundant LOs

for all ¢ in computes do
co—COinc
COpext < find next CO that accesses same data of co
mMove CO,q; to after co
end for
for all ¢ in computes do
so «—SOin ¢
co « last CO that produces so
move so to after co
end for
for all ¢ in computes do
lo—L1LOinc
lopext < LO in next of ¢
if lopex == lo then
remove lo,ext
end if
end for

Compute steps with LOs accessing the same data are
grouped in a sequence. This causes some of the LOs to be-
come redundant, thus improving data reuse. LOs that are
already present in M/WBuf or LOs that are not used by any
CO are removed. SO must be moved after all COs that pro-
duces it. Finally, another pass is applied to double buffer,
such that a compute step will pre-fetch data for the follow-
ing compute step. A LO in the next compute step is moved
to a previous one if that doesn’t create any true dependency.

7 Instruction generation

Once a list of compute steps is created, a code generation
phase converts each load, compute and store object into a
list of instructions. Most of the computational structure was
sketched as a result of compute step creation. This phase
takes care of instruction-level optimizations, such as register
assignment, branch delay slot filling, loop creation and un-
rolling. Each object has a corresponding function that creates
instructions. Code generation for a compute step is shown
in figure 2 part 4.

Instructions are grouped into basic blocks (BB). A list of
BB is created per compute cluster. Each BB runs in sequence.
The destination of any control flow instruction cannot be
at any other BB. This way makes scanning instructions for
potential optimizations and error checking bounded within
a BB, rather than all or a fixed number of instructions.

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

1 2 3
Compute Load from m0 to Buf
step
CONV Load from mO to Buf
l Load from w0 to WBuf
MAX Compute half rows
l Store from Buf to m1
Compute Compute other rows
CONV e
¢ Store from Buf to m1
RESADD Compute Load from mO to Buf

stey
B Load from m1 to Buf

Load from w1 to WBuf

Load from w1 to WBuf

Compute and add

Store to mem

Compute other output

Compute
planes and add

step
Store to mem

A. Chang, A. Zaidy, M. Vitez, L. Burzawa, E. Culurciello

4

LD memO to Buf
LD mem1 to Buf

LoadLoop:

LD weightl to WBuf
Branch Loadloop
LoadLoop:

LD weightl to WBuf
Branch Loadloop

Kloop:
VMOV Bias
Yloop:
Xloop:
VMOV Add
Tloop:

// residual add values
// input to convolution

// load weights
// load to all vMACs

// pre fetch other weights
// load to all vMACs

// use all weights in WBuf

// add bias for each weight

// stride on y-axis

// stride on x-axis

// residual add for each output
// accumulate loop

MAC // result doesn’t go to Buf
Branch Tloop

MAC
Branch Xloop
Branch Yloop
Branch Kloop

TMOV Buf to mem2

// result goes to Buf

// store to memory

Figure 2. Example of instruction generation for part of ResNet model. 1- ResNet model layers. 2- list of layers. 3- Creation of
compute steps that contains a list of LO, CO and SO. 4- Shows the main instructions generated from a compute step.

load k(0) load k(0) load k(0)
load m(0) load m(0) load m(0)
compute m(0) x k(0) compute m(0) x k(0) compute m(0) x k(0)
load m(1) load k(1) load k(1)
compute m(1) x k(0) —load-m{0——— compute m(0) x k(1)
load m(2) compute m(0) x k(1) load m(1)
compute m(2) x k(0) load m(1) compute m(1) x k(0)
store o(0) compute m(1) x k(0) compute m(1) x k(1)
load k(1) —toadmtt——— load m(2)
load m(0) compute m(1) x k(1) compute m(2) x k(0)
compute m(0) x k(1) load m(2) store o(0)
load m(1) R <) compute m(2) x k(1)
compute m(1) x k(1) store o(0) store o(1)
load m(2) — joad-m{2——
compute m(2) x k(1) compute m(2) x k(1)
store o(1) store o(1)
1) (2) (3)

Figure 3. Example of algorithm 2. 1- Group the COs with same LOs together. The arrow in the diagram shows moving a
compute step upwards. 2- Remove redundant LOs indicated by a line crossing the objects that are removed. 3- Resulting

schedule before double-buffering pass.

The instruction cache is separated into 2 banks of 512
instructions. For each bank, a load is needed to load instruc-
tions to another bank. The compiler groups all the instruc-
tions into sections of 512 ensuring that there isn’t a branch
from one instruction bank to another. The compiler merges
BBs to form instruction banks (groups of 512 instructions).
Some instructions that are not in a loop or if-else condition
from the following BB are moved to the instruction bank
to so that I$ is better utilized. Absence of branches across
instruction banks is ensured by the BBs. At the beginning
of each instruction bank, a load for the following bank is
inserted. In the end, a jump to the next bank is inserted to
align the section of useful instructions to 512.

In MAC CO, the accumulate loop issues multiple instruc-
tions that accumulate the results before producing an output
pixel. This is because not all data needed to produce an out-
put value is contiguous. In the case of a CONV with k, and k,,
equal to 3. 3 MAC instructions with 3 different addresses in
MBuf and WBuf are needed. CO creates the accumulate loop
that issues a MAC and increments each address by a constant.
MAC CO code generation function unrolls the accumulate
loops if they are small enough. They also add VMOVs in case
of CONV+ADD. If 2 consecutive output values need to be
compared like in CONV+MFM layers in LightCNN [41], then
2 sets of MAC instructions are created in sequence. Loop
over all kernels in WBuf, y-loop and x-loop are conditionally

DNNs Compiler for a Trace-Based Accelerator

created. MAX CO and COPY CO also create those loops if
needed.

SO conditionally creates sync instructions to avoid data
corruption. Load, vector compute, and store instructions
have variable latency and can be issued in parallel. In cases
when there is a latency mismatch, a sync instruction is
needed to avoid vector data hazards. The inference engine
has multiple compute clusters, each with an independent
control core, MBuf, and WBuf. There is one sync instruction
that synchronizes the execution of all clusters. For example,
if a cluster finishes producing half of the outputs in a CONV,
it will wait at the sync instruction for the other cluster to also
reach a barrier and complete the CONV layer before going
to the second layer. Another possibility is to send different
inputs for all clusters in which barrier isn’t needed.

As instructions are created, they are checked for incon-
sistencies in their arguments: immediate is above a certain
number of bits, the register value has overflown, special
registers can only be used with some instructions, etc. In-
structions are also labeled to determine some properties of
the instruction: whether they cause WAW or RAW on the
scalar registers, they are in a branch delay slot, they are re-
dundant, they are in nested loops, or they have an immediate
that will be modified (e.g: for address reallocation). After a
BB is created, instruction optimizations are applied to the
BB.

Vector instructions (MAC/MAX) take a variable amount
of cycles to produce a result. Within these cycles we want
to hide all other necessary operations: loop control, condi-
tional branches, buffer address increment and load instruc-
tions. If those operations take on average more cycles than
MAC/MAX latency then CUs would stall.

Read after write (RAW) is when an instruction reads from
aregister that was just written to in less than 4 cycles gap. In
the case of RAW, the instruction will stall up to 4 cycles to get
access to the required register. A common situation is shown
in 4, where some instructions set some registers to have the
MBuf and WBuf addresses for a MAC/MAX. To avoid RAW
between the registers sets and the MAC/MAX instructions,
some instructions for setting addresses are grouped, using
different registers. The following set of MAC/MAX won’t
be stalled due to RAW. Pre-loading addresses into different
registers solves the issue as long as there are enough regis-
ters as shown in 4. This instruction-level transformation is
necessary for CONV/TCONV with small kernel size, which
has low MAC latency, or max-pool layers. For example, the
execution time for AlexNet's second max-pool layer reduced
from 0.53 to 0.31 ms. And TCONV with 3x3 kernel, 2x2
stride, 32x32x64 input, o, = 64 reduced the execution time
from 2.202 to 1.498 ms.

An array determines if a register is alive or dead, and this
determines if instructions can use a particular register. It also
determines how far an instruction can be moved without
affecting other instructions. Redundant instructions or dead

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

MOV RO maddr
MOV R1 kaddr
MAC RO R1

ADD RO += offset
ADD R1 += offset
MAC RO R1

ADD RO += offset
ADD R1 += offset
MAC RO R1

\ 4

MOV RO maddr

MOV R1 kaddr

MOV R2 maddr+offset
MOV R3 kaddr+offset
MOV R4 maddr+2.offset
MOV R5 kaddr+2.offset
MAC RO R1

MAC R2 R3

MAC R4 R5

Figure 4. Example of code transformation to overlap book-
keeping operations with MAC/MAX instruction latency.

code are eliminated. Branch delay slot filling follows a similar
approach to RAW, in which potential independent scalar
instructions inside the loop are moved into an empty delay
slot.

8 Instruction deployment

The last task is to run the instructions. After code generation,
weights data is arranged to make kernel loads contiguous.
For example, in INDP mode each MAC processes a different
kernel so each WBuf of each vMAC has a group of 16 kernels.
Each CU has a group of 64 kernels assuming kernel loads are
in broadcast mode. If 2 groups of kernels fit in WBuf, then
kernel 0 to 15 and 64 to 79 must be in sequence so that one
load is needed. Bias values are attached at the beginning of
each kernel.

An external memory shared between the accelerator and
host contains all the data needed for execution. The memory
layout reserves memory locations for temporary intermedi-
ate results for layers, input, output, weights, and instructions.
Inference engine’s LD and ST units access those locations to
run. The memory layout, arranged weight data and instruc-
tions are saved in a file, which can be read by a decoding
program to bypass recompilation of the same DNN model.
Instructions that access memory are labeled in the code gen-
eration phase, and a reallocation table is created and saved.

It is possible to instantiate an accelerator on different
FPGA cards with one host processor. In this case, separate
software objects are created for each FPGA card. Different
FPGAs can run different models or different inputs.

The inference engine provides some configuration regis-
ters that enable an initial load instruction to populate the
instruction buffer with the first set of instructions. Another
register to count the amount of data sent to and received
from memory. The software polls the output counter register

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

to check whether processing has finished or not. The mea-
surements are acquired from these registers are explained
below:

e Execution time: is measured between setting the ac-
celerator’s start register and until all expected output
values are produced.

e Expected time: is the time that it would have taken
given the accelerator running at peak performance. It
is calculated with equation 2, where MACunits is the
total number of MAC units. Each MAC unit can do 2
Ops per cycle.

e Performance: is the ratio between the amount of oper-
ations, which is calculated from the DNN model, and
execution time.

o Efficiency: is the ratio of expected time with measured
run-time.

e Required bandwidth: is calculated as the total amount
of data transferred divided by the expected execution
time.

e Achieved bandwidth: is the ratio between the mea-
sured amount of data transferred with the measured
execution time.

Ops @
2.MACunits. freq

For validation purposes, the compiler has a software im-
plementation of the model’s layers using Q8.8 to simulate
the inference engine’s compute operations. The accelerator’s
output for each layer is compared with CPU implementation
of the layer to check for correctness. A functional simulator
that executes custom instructions were created to debug and
experiment with the generated code.

Expected_time =

9 Results

The hardware accelerator parameters used in this work are
512KB of WBuf and 256 KB of MBuf, 4 KB of I$ and 256
MACs per CC. An accelerator at 187 MHz was implemented
using AC510 [28], which contains HMC memory and Xilinx
KU060.

Figure 5 shows measured performance (top), bandwidth
(middle) and efficiency (bottom) for some DNN models. The
required bandwidth is shown in striped bars. This shows
that the compiler and the accelerator are capable of running
various DNN model architectures at high efficiency. The
figure also demonstrates that the system is able to scale its
performance across CC and FPGA cards.

Input size of choice is 224 X 224 X 3. For LightCNN9 input
size is 128 X 128 X 1, Inception-v3 is 299 X 299 X 3, Linknet
[7], styletransfer [16] and yolov3 [32] are 256 X 256 X 3. The
execution time doesn’t account for the linear layers.

Using EX750 backplane multiple AC510 cards were added.
The measurements were obtained on 1 FPGA (1f) or 2 FPGAs
(2f), using 1 input image (1i) or 2 images (2i) and using 1 CC

A. Chang, A. Zaidy, M. Vitez, L. Burzawa, E. Culurciello

(1cc) or 2 CCs (2cc). For example, in yellow 2cc1fli means
that 1 image was distributed into 2 CCs within 1 FPGA. In
red, 2cc1f2i 1 image was processed by each CC on 1 FPGA.
The maximum bandwidth that we achieved on one FPGA
is 7 GB/s. 2cc1fli shows 2X performance boost as expected
from using 2X more MACs on same number of operations
compared to 1lcclfli. A larger system processes multiple
images (more operations) in parallel achieving the same
execution time of 1cc1fli. Thus performance for 2cc1f2i and
1cc2f2i is 2x of 1cc1fli. 1cc4f4i performance is 4X.

LSTMs and GRUs are also supported in this framework.
Table 1 shows the execution time of 2 LSTM/GRU layers
with a sequence length of 100. Different hidden layer sizes
were used. Both models are memory bound workloads for
accelerators with small on-chip buffers. This shows that the
compiler is able to support applications that require RNN
models.

Table 1. LSTM and GRU execution times

Type | Size | Exec. Time [ms]
GRU 128 9.7
GRU 512 76.4
LSTM | 128 13.4
LSTM | 512 100.1

9.1 Instruction analysis

Table 2 shows that majority of CONV layers are executed in
COOP mode, thus most of the layers have i, as a multiple of
16. LD length is in 64 B granularity, so LD with a length of 1
transfers 64 B of data. The MAC trace length is represented
with 12- bit so their max is 4096. CONV layers in the bench-
mark models don’t have k, X i, larger than 2048. The LD
length on average is larger than the ST length.

The compiler generates an instruction stream that achieves
performance comparable to handcrafted instructions as shown
in table 3. The results in this table were measured with an
early prototype system with 1 CU system, running at 142
MHz. In the table, CONVs parameters are, respectively, in-
put size, kernel size, input plane, output plane, stride, and
padding. Auto stands for compiler-generated code and hand
is handwritten code. Auto-generated code has higher instruc-
tion count (437 more), but it achieves similar efficiency to
hand-optimized code. We have only compared some AlexNet
layers because models in handwritten instruction are human
error-prone and tedious.

9.2 Loop rearrangement for bandwidth constraints

Unlike GPUs and ASIC designs, FPGA accelerators are lim-
ited mostly by their off-chip memory bandwidth. The re-
quired bandwidth for a layer is a ratio between the total

amount of data transferred by the expected execution time.
Loop rearrangement is a method that reduces the total amount

DNNs Compiler for a Trace-Based Accelerator

12
10

BW [GB/s]

O N » O

50

N W b
o O o
o O O O

Performance [Gop/s]
=
1)
o

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

: |1L1L1|||I|IIIIIII|MJ||I|

0.8
z
< 0.6
2
(=}
& 0.4
i}
0.2
(o]

X <
& & &L $ S &
NS B S B o} \'>° K7W -\\o A& A°
2 & & & O Q & e
< < IS & & & <&
& ES)
M 1cclfli ™ 2cclf2i ®™ 2cclfli lcc2f2i ® lccafai

Figure 5. Bandwidth, performance and efficiency measurement of inference engine’s execution for different DNN models
with compiler-generated code. The required bandwidth is striped bars and measured bandwidth is the solid bar.

Table 2. Instruction parameters in different models. INDP
and COOP columns show the percentage of the MAC in-
structions modes. LD shows the average LD length. MAC is
the average trace length. ST shows the average ST length.

Model | INDP | COOP | LD | MAC | ST
alexnet 12 88 | 616 427 | 80
resnet18 7 93 | 367 291 | 112
resnet34 4 96 | 416 340 | 99
resnet50 9 91 | 472 362 | 117
inceptionv3 1 99 1100 | 239|110
googlenet 8 92 | 164 | 265 | 111
vgglé 2 98 | 485 | 471 | 128
vggl9 2 98 | 504 533 | 124
lightcnn9 16 84 | 201 182 | 156
linknet 6 94 | 266 204 | 146
styletransfer 6 94| 60| 263| 79
yolov3 2 98 | 87 331 | 22

of data movement by exploiting data reuse, which leads to
memory bandwidth savings. Some CONV layers have large
kernels, whereas others have large maps, but usually neither
completely fits into the buffer. Maps and kernels need to be
partitioned and processed in buffer sized tiles. A map tile
needs to go through each kernel tile, leading to repeated
kernel loads when the next map tile is loaded. Alternatively,

Table 3. Hand optimized code (hand) versus auto-generated
instructions (auto) for some AlexNet layers.

Layer | Code | Time [ms] | Eff. [%]
13x13,3%3,192,384,1,1 ﬁirtlg ﬁé; ZZ:?
13x13,3x3,384,256,1,1 ﬁirtlg ii:?i Zg:;
13x13,3%3,256,256,1,1 ;Iftlg Z:Zz ZZ:E

a kernel tile needs to be processed with every map tile, re-
sulting in repeated map loads for the following kernel tile.
The total amount of data moved is different depending on
kernel/map load repetition for a particular CONV layer. The
compiler estimates the amount of data to be transferred for
both configurations and chooses the one that sends fewer
data.

ReuseK is an abbreviation for repeated maps data and
reuseM is an abbreviation for repeated kernel data. The differ-
ence between these two in terms of performance (top), band-
width (middle) and efficiency (bottom) are shown in figure 6.
The required bandwidth is shown in striped bars. The mea-
surements were made on 1CC 1F for various DNN models.
This shows that reuseK leads to lower memory bandwidth
requirements for most DNNs. For some models, reuseM and
reuseK doesn’t show a significant difference.

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

BW [GB/s]
o R, N W B U O

140
120

=
® O
o o

Iy
o

Performance [Gops/s]
(o)
o

0

0.8
=3
c 0.6
2
£ 0.4
&
0.2
> °©
& & FE &S
% o & P &
@ @ @ S R
€ &

4"3"

A. Chang, A. Zaidy, M. Vitez, L. Burzawa, E. Culurciello

oIIIIIIIIIIII

o reuseM

W reuseK

9 O <
2 N 2
S0 & &
& ! Q‘é{& «\\ <b° *o

<§ &
S

Figure 6. Required memory bandwidth, bandwidth, performance, and efficiency on AC510 using reuseM or reuseK mode for

various DNN modes.

9.3 Discussion

In this paper, 4 different levels of the compiler flow were
presented. Each level contains hardware aware optimiza-
tions. Parsing can fuse layers according to the primitives in
the hardware’s ISA. Intermediate code optimization reorders
code based on internal buffer size. Code generation optimizes
the order of instructions based on RAW and WAW depen-
dencies. Deployment distributes the workload for multiple
accelerators.

In comparison, TVM [8] is a generic deep learning com-
piler that can target various architectures: GPU, CPU, VTA
[29]. VTA is an FPGA based hardware accelerator. Figure 7
shows the roofline plot for VTA and this work. The dashed
lines denote the maximum that the accelerator can achieve.
The data points denote what is achieved given the execution
of CONVs from resnet18 mentioned in [29]. The closer the
points are to their respective colored dashed line the better.

DNNVM [42] presents an FPGA system to accelerate DNN
models. Figure 8 shows the FPS comparison against this work.
A 4 CC system was used for this comparison. This shows
that our system can achieve higher FPS given the techniques
presented in this work.

10 Conclusion

This work presents a compiler that takes a model defini-
tion created with popular deep learning frameworks and
produces code for a custom DNN accelerator. This work

100 TR e we e
o . . I
S R P
8 e
It Lo e ee
5 10 .- e
£ .~ .
L
9]
a

1
10 100 1000

Arithmetic Intensity [ops/B]

® this work ®vta

Figure 7. Roofline comparison with VTA [29].

70
60
50
40
30
20
10
. Hm

VGG16 (224x224x3) Resnet50 (224x224x3 GoogleNet (224x224x3)

FPS

EDNNVM mthis work

Figure 8. FPS comparison with DNNVM [42].

contributes to the adoption of custom hardware accelera-
tors with domain-specific ISA in embedded or server-based
applications. Our future work involves improvements in im-
plementing support for more DNN models.

DNNs Compiler for a Trace-Based Accelerator

Acknowledgment
This work was supported by FWDNXT Inc. and Micron

References

[1] 2017. Open Neural Network Exchange. (2017). https://github.com/

onnx/onnx

[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. 2016. Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. Opentuner: An extensible framework for program autotuning.
In Parallel Architecture and Compilation Techniques (PACT), 2014 23rd

International Conference on. IEEE, 303-315.

[4] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2017. Neu-
rostream: Scalable and Energy Efficient Deep Learning with Smart

Memory Cubes. arXiv preprint arXiv:1701.06420 (2017).

[5] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak
Shah. 2015. Comparative study of deep learning software frameworks.

arXiv preprint arXiv:1511.06435 (2015).

[6] Andre Xian Ming Chang, Berin Martini, and Eugenio Culurciello. 2015.
Recurrent neural networks hardware implementation on FPGA. arXiv

preprint arXiv:1511.05552 (2015).

[7] Abhishek Chaurasia and Eugenio Culurciello. 2017. LinkNet: Ex-
ploiting Encoder Representations for Efficient Semantic Segmentation.

arXiv preprint arXiv:1707.03718 (2017).

[8] Tiangi Chen. 2017. TVM: An End to End IR Stack for Deploying
Deep Learning Workloads on Hardware Platforms. (2017). http:

//tvmlang.org/2017/08/17/tvm-release-announcement.html

[9] Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet:
A flexible and efficient machine learning library for heterogeneous

distributed systems. arXiv preprint arXiv:1512.01274 (2015).

[10] Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning
to Optimize Tensor Programs. arXiv preprint arXiv:1805.08166 (2018).

[11] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn:
Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759

(2014).

[12] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011.
Torch7: A matlab-like environment for machine learning. In BigLearn,

NIPS Workshop.
[13

[t

plore the architecture/compiler co-design space. (2009).

[14] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution
arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016).

[15] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y.
LeCun. 2011. NeuFlow: A runtime reconfigurable dataflow processor
for vision. In CVPR 2011 WORKSHOPS. 109-116. https://doi.org/10.

1109/CVPRW.2011.5981829

[16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. A neural

algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015).
[17

—

and Pattern Recognition (CVPR) Workshops.
[18

[t

2017 IEEE International Symposium on. IEEE, 1-4.

Christophe Dubach. 2009. Using machine-learning to efficiently ex-

Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and
Eugenio Culurciello. 2014. A 240 G-ops/s Mobile Coprocessor for
Deep Neural Networks. In The IEEE Conference on Computer Vision

Vinayak Gokhale, Aliasger Zaidy, Andre Xian Ming Chang, and Euge-
nio Culurciello. 2017. Snowflake: An efficient hardware accelerator
for convolutional neural networks. In Circuits and Systems (ISCAS),

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. 2016. Ese: Effi-
cient speech recognition engine with compressed Istm on fpga. arXiv
preprint arXiv:1612.00694 (2016).

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. 2016. EIE: Efficient Inference Engine
on Compressed Deep Neural Network. CoRR abs/1602.01528 (2016).
http://arxiv.org/abs/1602.01528

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).
http://arxiv.org/abs/1512.03385

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term
memory. Neural computation 9, 8 (1997), 1735-1780.

Yanggqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
Caffe: Convolutional architecture for fast feature embedding. In Pro-
ceedings of the 22nd ACM international conference on Multimedia. ACM,
675-678.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, et al. 2017. In-datacenter performance analysis of a tensor
processing unit. arXiv preprint arXiv:1704.04760 (2017).

Patrick Judd, Alberto Delmas, Sayeh Sharify, and Andreas Moshovos.
2017. Cnvlutin2: Ineffectual-Activation-and-Weight-Free Deep Neural
Network Computing. arXiv preprint arXiv:1705.00125 (2017).

Jason Knight. 2017. Technical Preview of IntelAé NervanaaDé Graph.
(2017). http://ngraph.nervanasys.com/docs/latest/

Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji
Chen, and Tianshi Chen. 2016. Cambricon: An instruction set archi-
tecture for neural networks. In Proceedings of the 43rd International
Symposium on Computer Architecture. IEEE Press, 393-405.

Micron 2017. AC-510 UltraScale FPGA with Hybrid Memory Cube.
Micron. http://picocomputing.com/wp-content/uploads/2016/01/
AC-510_Product_Brief.pdf

Thierry Moreau, Tiangi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. VTA: An Open Hardware-Software
Stack for Deep Learning. arXiv preprint arXiv:1807.04188 (2018).
CPLEX Optimization et al. 1993. Using the cplex callable library and
cplex mixed integer library. CPLEX Optimization, Incline Village (1993).
Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman
Dzhabarov, James Hegeman, Roman Levenstein, Bert Maher, Satish
Nadathur, Jakob Olesen, et al. 2018. Glow: Graph Lowering Compiler
Techniques for Neural Networks. arXiv preprint arXiv:1805.00907
(2018).

Mohammad Javad Shafiee, Brendan Chywl, Francis Li, and Alexander
Wong. 2017. Fast YOLO: a fast you only look once system for real-time
embedded object detection in video. arXiv preprint arXiv:1709.05943
(2017).

Hardik Sharma, Jongse Park, Emmanuel Amaro, Bradley Thwaites,
Praneetha Kotha, Anmol Gupta, Joon Kyung Kim, Asit Mishra, and
Hadi Esmaeilzadeh. 2016. Dnnweaver: From high-level deep network
models to fpga acceleration. In the Workshop on Cognitive Architectures.
Daniel Strigl, Klaus Kofler, and Stefan Podlipnig. 2010. Performance
and scalability of GPU-based convolutional neural networks. In Paral-
lel, Distributed and Network-Based Processing (PDP), 2010 18th Euromi-
cro International Conference on. IEEE, 317-324.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2017. Effi-
cient processing of deep neural networks: A tutorial and survey. arXiv
preprint arXiv:1703.09039 (2017).

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going Deeper With Convolutions. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

The XLA Team. 2017. TensorFlow compiled. (2017). https://developers.
googleblog.com/2017/03/xla-tensorflow-compiled.html

https://github.com/onnx/onnx
https://github.com/onnx/onnx
http://tvmlang.org/2017/08/17/tvm-release-announcement.html
http://tvmlang.org/2017/08/17/tvm-release-announcement.html
https://doi.org/10.1109/CVPRW.2011.5981829
https://doi.org/10.1109/CVPRW.2011.5981829
http://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1512.03385
http://ngraph.nervanasys.com/docs/latest/
http://picocomputing.com/wp-content/uploads/2016/01/AC-510_Product_Brief.pdf
http://picocomputing.com/wp-content/uploads/2016/01/AC-510_Product_Brief.pdf
https://developers.googleblog.com/2017/ 03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/ 03/xla-tensorflow-compiled.html

LCTES’18, June 19-20, 2018, Philadelphia, PA, USA A. Chang, A. Zaidy, M. Vitez, L. Burzawa, E. Culurciello

[38] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya [41] Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. 2015. A light
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew CNN for deep face representation with noisy labels. arXiv preprint
Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework- arXiv:1511.02683 (2015).

Agnostic High-Performance Machine Learning Abstractions. arXiv [42] Yu Xing, Shuang Liang, Lingzhi Sui, Xijie Jia, Jiantao Qiu, Xin Liu,
preprint arXiv:1802.04730 (2018). Yushun Wang, Yu Wang, and Yi Shan. 2019. DNNVM: End-to-End

[39] Marko Vitez. 2017. Thnets. (2017). https://github.com/mvitez/thnets Compiler Leveraging Heterogeneous Optimizations on FPGA-based

[40] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, CNN Accelerators. arXiv preprint arXiv:1902.07463 (2019).

Qing Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-
Performance Computing on the Intel® Xeon PhiaDé. Springer, 167-188.

https://github.com/mvitez/thnets

	Abstract
	1 Introduction
	2 Literature Review
	3 Deep Neural Networks
	4 Inference Engine
	5 Parsing
	6 Intermediate code
	7 Instruction generation
	8 Instruction deployment
	9 Results
	9.1 Instruction analysis
	9.2 Loop rearrangement for bandwidth constraints
	9.3 Discussion

	10 Conclusion
	References

